Dr. Gil Marom

School of Mechanical Engineering
ביה"ס להנדסה מכנית סגל אקדמי בכיר
Dr. Gil Marom
Phone: 03-6408788
Office: Wolfson - Engineering, 228

General Information

The goal of my research is to understand the mechanisms of cardiovascular disease, so that we may offer viable solutions for them. Specifically, I am interested in the hemodynamics, structural mechanics, and their interaction in various cardiovascular devices, diseases and surgical interventions. Obviously, the complex biomechanical interaction underlying cardiovascular disease processes should be better understood and is essential for effective mechanical design of the devices, understanding progression of the disease or planning of effective clinical procedures.


Gil Marom holds M.Sc. (2009) and Ph. D. (2013) in Mechanical Engineering, both from the Tel Aviv University. Between 2013 and 2017 he was Postdoctoral Research Associate in the Department of Biomedical Engineering in Stony Brook University, NY, USA. He joined Tel Aviv University as a faculty member in 2017 as a Senior Lecturer in the School of Mechanical Engineering.


Numerical models: Fluid–structure interaction (FSI), computational fluid dynamics (CFD), finite element method (FEM)

Biomechanics: Heart valves, Cardiovascular device



Google Scholar profie


M. Rosenfeld, G. Marom, A. Bitan, Numerical simulation of the airflow across trees in a windbreak. Boundary Layer. Meteorol. 135, pp. 89-107, doi: 10.1007s10546-009-9461-8, 2010

G. Marom, R. Haj-Ali, E. Raanani, H.J. Schäfers, M. Rosenfeld, A fluid–structure interaction model of the aortic valve with coaptation and compliant aortic root. Med. Biol. Eng. Comput. 50, pp. 173-182, doi: 10.1007/s11517-011-0849-5, 2012

G. Marom, R. Haj-Ali, M. Rosenfeld, H.J. Schäfers, E. Raanani, Aortic root numeric model: Annulus diameter prediction of effective height and coaptation in post–aortic valve repair. J. Thorac. Cardiovasc. Surg. 145, pp. 408-413, doi: 10.1016/j.jtcvs.2012.01.080, 2013

H.J. Schäfers, W. Schmied, G. Marom, D. Aicher, Cusp height in aortic valves. J. Thorac. Cardiovasc. Surg. 146, pp. 269-274, doi: 10.1016/j.jtcvs.2012.06.053, 2013

R. Haj-Ali, G. Marom, S. Ben Zekry, M. Rosenfeld, E. Raanani, A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. J. Biomech. 45, pp. 2392-2397, doi: 10.1016/j.jbiomech.2012.07.017, 2012 (†equal contributions)

G. Marom, R. Haj-Ali, M. Rosenfeld, H.J. Schäfers, E. Raanani, Aortic root numeric model: Correlation between intraoperative effective height and diastolic coaptation. J. Thorac. Cardiovasc. Surg. 145, pp. 303-304, doi: 10.1016/j.jtcvs.2012.08.043, 2013

G. Marom, R. Halevi, R. Haj-Ali, M. Rosenfeld, H.J. Schäfers, E. Raanani, Numerical model of the aortic root and valve: Optimization of graft size and sinotubular junction to annulus ratio. J. Thorac. Cardiovasc. Surg. 146, pp. 1227-1231, doi: 10.1016/j.jtcvs.2013.01.030, 2013

G. Marom, H.S. Kim, M. Rosenfeld, E. Raanani, R. Haj-Ali, Fully coupled fluid-structure interaction model of congenital bicuspid aortic valves: Effect of asymmetry on hemodynamics. Med. Biol. Eng. Comput. 51, pp. 839-848, doi: 10.1007/s11517-013-1055-4, 2013

G. Marom, M. Peleg, R. Halevi, M. Rosenfeld, E. Raanani, A. Hamdan, R. Haj-Ali, Fluid-structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps. J. Biomech. Eng. 135, pp. 101001-101001-6, doi: 10.1115/1.4024824, 2013

G. Marom, Numerical methods for fluid-structure interaction models of aortic valves. Arch. Comput. Meth. Eng. 22, pp. 595–620, doi: 10.1007/s11831-014-9133-9, 2015

G. Marom, W.C. Chiu, J.R. Crosby, K.J. DeCook, S. Prabhakar, M. Horner, M.J. Slepian, D. Bluestein, Numerical model of full cardiac cycle hemodynamics in a total artificial heart and the effect of its size on platelet activation. J. Cardiovasc. Transl. Res. 7, pp. 788-796, doi: 10.1007/s12265-014-9596-y, 2014

R. Halevi, A. Hamdan, G. Marom, M. Mega, E. Raanani, R. Haj-Ali, Progressive aortic valve calcification: Three-dimensional visualization and biomechanical analysis. J. Biomech. 48, pp. 489-497, doi: 10.1016/j.jbiomech.2014.12.004, 2015

F. Piatti, F. Sturla, G. Marom, J. Sheriff, T.E. Claiborne, M.J. Slepian, A. Redaelli, D. Bluestein, Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid-structure interaction approach. J. Biomech. 48, pp. 3650-3658, doi: 10.1016/j.jbiomech.2015.08.009, 2015

M. Mega, G. Marom, R. Halevi, A. Hamdan, D. Bluestein, R. Haj-Ali, Imaging analysis of collagen fiber networks in cusps of porcine aortic valves: Effect of their local distribution and alignment on valve functionality. Comput. Method. Biomech. Biomed. Eng. 19, pp. 1002-1008, doi: 10.1080/10255842.2015.1088009, 2016

G. Marom, D. Bluestein, Lagrangian methods for blood damage estimation in cardiovascular devices - How numerical implementation affects the results. Expert Rev. Med. Devices. 13, pp. 113-122, doi: 10.1586/17434440.2016.1133283, 2016

R. Halevi, A. Hamdan, G. Marom, K. Lavon, S. Ben Zekry, E. Raanani, D. Bluestein, R. Haj-Ali, Fluid-structure interaction modeling of calcific aortic valve disease using a patient-specific three-dimensional calcification scan. Med. Biol. Eng. Comput. 54, pp. 1683-1694, doi: 10.1007/s11517-016-1458-0, 2016

M. Bianchi, G. Marom, R.P. Ghosh, H.A. Fernandez, J.R. Taylor Jr., M.J. Slepian, D. Bluestein, Effect of balloon-expandable transcatheter aortic valve replacement positioning: A patient-specific numerical model. Artif. Organs. 40, pp. E292-E304, doi: 10.1111/aor.12806, 2016

E. Soifer, D. Weiss, G. Marom, S. Einav, The effect of pathologic venous valve on neighboring valves - Fluid-structure interactions modeling. Med. Biol. Eng. Comput. 55, pp. 991-999, doi: 10.1007/s11517-016-1575-9, 2016

C. Gao, P. Zhang, G. Marom, Y. Deng, D. Bluestein, Reducing the effects of compressibility in DPD-based blood flow simulations through severe stenotic microchannels. J. Comput. Phys. 335, pp. 812-827, doi: 10.1016/j.jcp.2017.01.062, 2017

K. Lavon, R. Halevi, G. Marom, S. Ben Zekry, A. Hamdan, H.J. Schäfers, E. Raanani, R. Haj-Ali, Fluid-structure interaction models of bicuspid aortic valves: The effects of nonfused cusp angles. J. Biomech. Eng. 140, 031010, doi: 10.1115/1.4038329, 2017

G. Marom, S.K. Eswaran, R.J. Rapoza, S.F.A. Hossainy, M.J. Slepian, D. Bluestein, Design effect of metallic (durable) and polymeric (resorbable) stents on blood flow and platelet activation. Artif. Organs. 42, pp. 1148-1156, doi: 10.1111/aor.13276, 2018

R. Halevi, A. Hamdan, G. Marom, K. Lavon, S. Ben Zekry, E. Raanani, R. Haj-Ali, A new growth model for aortic valve calcification. J. Biomech. Eng. 140, 101008, doi: 10.1115/1.4040338, 2018

R.P. Ghosh, G. Marom, O.M. Rotman, S. Prabhakar, M.J. Slepian, M. Horner, D. Bluestein, Comparative fluid-structure interaction analysis of polymeric transcatheter and surgical aortic valves’ hemodynamics and structural mechanics. J. Biomech. Eng.  140, 121002, doi: 10.1115/1.4040600, 2018

O.M. Rotman, B. Kovarovic, W.C. Chiu, M. Bianchi, G. Marom, M.J. Slepian, D. Bluestein, Novel polymeric valve for transcatheter aortic valve replacement applications: In vitro hemodynamic study. Ann. Biomed. Eng. 47, 113-125, doi: 10.1007/s10439-018-02119-7, 2019

M. Bianchi, G. Marom, R.P. Ghosh, O.M. Rotman, P. Parikh, D. Bluestein, Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomech. Model Mechanobiol. 18, 435-451, doi: 10.1007/s10237-018-1094-8, 2019

R. Plitman Mayo, Y. Abbas, D.S. Charnock-Jones, G.J. Burton, G. Marom, Three-dimensional morphological analysis of placental terminal villi, Interface Focus, 9, 20190037, doi: 10.1098/rsfs.2019.0037, 2019

K. Lavon, G. Marom, M. Bianchi, R. Halevi, A. Hamdan, A. Morany, E. Raanani, D. Bluestein, R. Haj-Ali, Biomechanical modeling of transcatheter aortic valve replacement in a stenotic bicuspid aortic valve: Deployments and paravalvular leakage, Med. Biol. Eng. Comput. 57: 2129-2143, doi: 10.1007/s11517-019-02012-y, 2019

H. Yaakobovich, R. Plitman Mayo, U. Zaretsky, A. Finkelstein, G. Marom, Numerical models of valve-in-valve implantation: Effect of intentional leaflet laceration on the anchorage, Biomech. Model Mechanobiol. 19:415-426, doi: 10.1007/s10237-019-01218-1, 2019

R.P. Ghosh, G. Marom, M. Bianchi, K. D'souza, W. Zietak, D. Bluestein, Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid–structure interaction analysis, Biomech. Model Mechanobiol. 19:1725–1740, doi: 10.1007/s10237-020-01304-9, 2020

G. Marom, S. Einav, New insights into valve hemodynamics, Rambam Maimonides Med. J. 11:e0014, doi:10.5041/RMMJ.10400, 2020

R. Plitman Mayo, H. Yaakobovich, A. Finkelstein, S.C. Shadden, G. Marom, Numerical models for assessing the risk of leaflet thrombosis post-transcatheter aortic valve-in-valve implantation, R. Soc. Open Sci. 7:201838, doi: 10.1098/rsos.201838, 2020

R. Plitman Mayo, H. Yaakobovich, A. Finkelstein, S.C. Shadden, G. Marom, Impact of leaflet laceration on the risk of leaflet thrombosis post valve-in-valve implantation, J. Biomech. 118:110309, doi: 10.1016/j.jbiomech.2021.110309, 2021

H. Yaakobovich, R. Plitman Mayo, U. Zaretsky, A. Finkelstein, D. Weiss, G. Marom, The effect of clinically recommended Evolut sizes on anchorage forces after BASILICA, J. Biomech. 118:110303, doi: 10.1016/j.jbiomech.2021.110303, 2021

G. Marom, R. Plitman Mayo, N. Agian, E. Raanani, Numerical biomechanics models of the interaction between a novel transcatheter mitral valve device and the subvalvular apparatus, Innovations, 16:327-333, doi: 10.1177/1556984521999362, 2021

K. Arhiptsov, G. Marom, Numerical models of spinal cord trauma: The effect of cerebrospinal fluid pressure and epidural fat on the results, J. Neurotrauma, 38:2176-2185, doi: 10.1089/neu.2021.0065, 2021

J. Weissmann, C.J. Charles, A.M. Richards, C.H. Yap, G. Marom, Cardiac mesh morphing method for finite element modeling of heart failure with preserved ejection fraction, J. Mech. Behav. Biomed. Mater., 126:104937, doi: 10.1016/j.jmbbm.2021.104937, 2022

L. Galili, A. White Zeira, G. Marom, Numerical biomechanics modelling of indirect mitral annuloplasty treatments for functional mitral regurgitation, R. Soc. Open Sci., 9:211464, doi: 10.1098/rsos.211464, 2022

T. Mekler, R. Plitman Mayo, J. Weissmann, G. Marom, Impact of tissue porosity and asymmetry on the oxygen uptake of the human placenta: A numerical study, Placenta, 129:15-22, doi: 10.1016/j.placenta.2022.09.008, 2022

J. Weissmann, C.J. Charles, A.M. Richards, C.H. Yap, G. Marom, Material property alterations for phenotypes of heart failure with preserved ejection fraction: A numerical study of subject-specific porcine models, Front. Bioeng. Biotechnol. 10:1032034, doi: 10.3389/fbioe.2022.1032034, 2022

L. Galili, J. Weissmann, A. White Zeira, G. Marom, Numerical modeling for efficiency and endurance assessment of an indirect mitral annuloplasty device, J. Mech. Behav. Biomed. Mater. 136:105516, doi: 10.1016/j.jmbbm.2022.105516, 2022


G. Marom, R. Haj-Ali, M. Rosenfeld, H.J. Schäfers, E. Raanani, Computer simulation of aortic valve geometry, in H.J. Schäfers (Editor), Current treatment of aortic regurgitation, UNI MED Science, 1st Edition, Bremen, Germany, ISBN 978-1-84815-196-3, pp. 110-113, 2013

G. Marom, K. Lavon, R. Haj-Ali, E. Raanani, One-point advice: Optimizing aortic valve repair techniques with computational models, in T. Kunihara, S. Takanashi (Editors), Aortic valve preservation: Concepts and approaches, Springer, 1st Edition, Singapore, ISBN 978-981-13-2067-5, doi: 10.1007/978-981-13-2068-2_5, pp. 45-51, 2019

Tel Aviv University makes every effort to respect copyright. If you own copyright to the content contained
here and / or the use of such content is in your opinion infringing, Contact us as soon as possible >>