Dr. Or Perlman

Dep. of Bio-Medical Engineering
מחלקה להנדסה ביו-רפואית סגל אקדמי בכיר
Dr. Or Perlman
Phone: 03-6409418
Office: Multi-disciplinary Center, 410

Education

Postdoc - Dept. of Radiology, Harvard Medical School and Massachusetts General Hospital

PhD - Biomedical Engineering, Technion – Israel Institute of Technology

MSc (Cum Laude) - Biomedical Engineering, Ben Gurion University of the Negev, Israel

BSc (Cum Laude) - Biomedical Engineering, Ben Gurion University of the Negev, Israel

Keywords

Medical Imaging, MRI, AI, Machine Learning, Deep Learning, Cancer, Neurological Disorders, Neuroscience, Molecular Imaging

Selected Publications

N. Vladimirov, O. Cohen, H.Y. Heo, M. Zaiss, C.T. Farrar, O. Perlman, ”Quantitative Molecular Imaging using Deep Magnetic Resonance Fingerprinting,” Nature Protocols, 2025. https://doi.org/10.1038/s41596-025-01152-w. Equal contribution.

A. Finkelstein, N. Vladimirov, M. Zaiss, O. Perlman, ”Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised Learning”, Communications Physics, Vol. 8, no. 164, pp. 1-11, 2025. 

Power, M. Rivlin, H. Shmuely, M. Zaiss, G. Navon, O. Perlman, ”In Vivo Mapping of the Chemical Exchange Relayed Nuclear Overhauser Effect using Deep Magnetic Resonance Fingerprinting,” iScience, Vol. 27, no. 111209, pp. 1-11, 2024.

O. Perlman, H. Ito, K. Herz, N. Shono, H. Nakashima, M. Zaiss, E. A. Chiocca, O. Cohen, M. S. Rosen, C. T. Farrar, ”Quantitative imaging of apoptosis following oncolytic virotherapy by magnetic resonance fingerprinting aided by deep learning,” Nature Biomedical Engineering, Vol. 6, pp. 648-657, 2022.
 

Research Interest

Our lab explores the molecular mechanisms underlying brain disease and develops methods for early diagnosis and therapy optimization. We develop tools for disentangling the different signals coming from brain metabolites, proteins, and lipids, and evaluate their potential to serve as noninvasive image bio-markers for cell death, ischemia, and disease severity. We design and implement AI-based methods for early interventions along the imaging pipeline, enabling automatic MRI acquisition protocol discovery and quantitative molecular parameters reconstruction. This allows for a drastic reduction in scan time and compatibility with a variety of biological scenarios.

Tel Aviv University makes every effort to respect copyright. If you own copyright to the content contained
here and / or the use of such content is in your opinion infringing Contact us as soon as possible >>